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Ferns belong to species-rich group of land plants, encompassing more than 11,000 extant species, and 
are crucial for reflecting terrestrial ecosystem changes. However, our understanding of their biodiversity 
hotspots, particularly in Southeast Asia, remains limited due to scarce genetic data. Despite harboring 
around one-third of the world’s fern species, less than 6% of Southeast Asian ferns have been 
DNA-sequenced. In this study, we addressed this gap by sequencing 1,496 voucher-referenced and 
expert-identified fern samples from (sub)tropical Asia, spanning Malaysia, the Philippines, Taiwan, 
and Vietnam, to retrieve their rbcL and trnL-F sequences. This DNA barcode collection of Asian ferns 
encompasses 956 species across 152 genera and 34 families, filling major gaps in fern biodiversity 
understanding and advancing research in systematics, phylogenetics, ecology and conservation. This 
dataset significantly expands the Fern Tree of Life to over 6,000 species, serving as a pivotal and global 
reference for worldwide barcoding identification of ferns.

Background & Summary
A diverse modern land plant lineages, ferns are estimated to include more than 11,000 species1. These plants 
are abundant and most diverse in tropical and insular regions in the world2. Our understanding of the 
hyper-diversity in these areas began during floristic investigations of the 19th and 20th centuries, before molec-
ular techniques became available. However, tropical ferns from these diversity hotspots remain scarce in DNA 
databases. This is especially true for Southeast Asia, where around one-third of world fern species are concen-
trated3, but less than 6% of species have been sequenced4.
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DNA barcoding — sequencing DNA regions demonstrated to be of broad taxonomic utility — has proven 
to be an effective tool to evaluate genetic diversity from taxon-wide collections5. However, choosing standard 
loci for DNA barcoding is critical to compare taxa and samples with diverse origins. Like many other plants, 
plastid rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit) and trnL-F (the intergenic spacer 
between tRNA-Leu and tRNA-Phe genes; sometimes referred to the region extending to the tRNA-Leu intron) 
are commonly used DNA barcodes in ferns because they have universal primers6–8, and, as plastid DNA regions, 
they are uniparentally inherited (reviewed in Kuo et al.9). DNA-referencing of these two barcodes has been 
widely employed6,10–14 and highly successful in fern phylogenetic studies15; to date, more than 5,600 fern spe-
cies are available with at least one of the two barcode sequences in GenBank15. trnL-F has been shown to have 
greater interspecific and intraspecific variation relative to rbcL because the former is include (a) non-coding 
spacer(s), whereas the latter is a protein-coding gene. trnL-F has been previously shown in studies including 
smaller sampling of ferns to have higher species discrimination rates than rbcL8,16. In comparison, rbcL is useful 
as a phylogenetic marker at deeper divergence levels due to its slower evolution rate, and is the most-frequently 
sequenced genetic region in ferns15 as well as a core DNA barcode in land plants17. Therefore, sequencing both 
regions is highly recommended for fern DNA barcoding projects, which can serve to both identify species 
and expand the phylogenetic sampling of the fern tree of life. trnH-psbA, another frequently used non-coding 
DNA barcode in plants17, is not a prevalent choice for ferns due to its relatively slow substitution rate in most 
species8,18. Other proposed plant DNA barcodes, such as nrITS and matK, lack (one of) the above-mentioned 
advantages, and are thus not prioritized in fern DNA barcoding studies8,19.

DNA barcoding has been successfully applied in various ecological and floristic surveys of ferns, and is 
particularly useful for DNA-identification of their cryptic gametophyte stage7,13,16,20,21. Fern gametophytes are 
free-living but frequently have too few morphological features to be reliably determined to species16. With DNA 
approaches, phenological studies and habitat investigations of fern gametophytes in the field can be accom-
plished based on reliably identified samples (e.g. Quinlan et al.22 and Wu et al.7). Notably, some ferns have popu-
lations consisting of long-lived gametophytes but producing no spore-producing individuals, which are referred 
to as ‘independent gametophytes’23–25. To confirm their species identities, such a molecular identification tool 
is indispensable. Additionally, fern DNA barcodes have been used to study novel ecological links between these 
plants and other organisms, including insect pollinators26 and rhizobium bacteria27. As demonstrated in ear-
lier research, prolific production coupled with high dispersibility means that fern spores provide a key signa-
ture reflecting environmental changes28,29. The emerging field of environmental DNA research relies on further 
development and publication of DNA barcodes, enabling ecologists to readily monitor environmental dynamics 
and to expand documentation of biodiversity30. A comprehensive and global database of fern DNA barcodes is 
therefore essential.

Here, we present a voucher-referenced and expert-identified collection of Asian ferns with DNA barcode 
regions rbcL and trnL-F, encompassing 1,496 samples from 956 species, including hybrid taxa. Of particu-
lar value is the large proportion of samples from fern diversity hotspots in South-eastern Asia, including the 
Philippines, Vietnam, and Malaysia, which fill major gaps in our understanding of these plants, and will facilitate 
future research of understanding fern diversity there. Furthermore, this DNA barcode dataset also serves as 
valuable resources for advancing investigation in systematics, phylogenetics, and conservation genetics of ferns 
from these biodiversity hotspots. Among these samples, 292 species were sequenced for the first time with these 
DNA barcodes, and will contribute to a notable expansion (4.6%) to the Fern Tree of Life (FTOL)15. The incor-
poration of our new sequence dataset with those already existing in FTOL offers the pivotal global database for 
fern barcode identification.

Methods
Sampling and specimen identification. We sampled a total of 1,496 fern collections across 390 localities 
in Malaysia, the Philippines, Taiwan, and Vietnam. They were collected during field expeditions spanning from 
2005 to 2022, and were vouchered with specimens in Taiwan Forestry Research Institute Herbarium (TAIF). 
From each collection, tissue was preserved on silica gel for DNA extractions, which are also publicly available at 
the TPG website (https://www.twfern.org/DB/DNACollection). Species-level identifications were conducted by 
experienced fern taxonomists, relying on the morphology and genetic data of voucher specimens. A few collec-
tions may represent undescribed species or require further taxonomic investigation, so their identification was 
thus determined only to the generic level.

DNA extraction, amplicon preparation, and sequencing. The workflow of this study is summarized 
in Fig. 1. First, fresh or silica-dried leaf tissues were used for DNA extractions of the 1,496 fern samples following 
the CTAB protocol by Kuo31. To amplify these DNA barcodes, various PCRs of rbcL and trnL-F amplicons were 
carried out according to three different sequencing methods, including (1) the traditional Sanger sequencing, 
and the multiplexing strategies utilizing high-throughput next-generation sequencing (NGS), (2) PacBio CCS 
(circular consensus sequencing) and (3) Illumina MiSeq. For Sanger and PacBio CCS, longer amplicons (~1 
kbp) were amplified and sequenced, with trnL intron alongside trnL-F. For Illumina MiSeq, shorter amplicons 
(<600 bp) were amplified and sequenced, and the rbcL region was split into two amplicons, rbcLN and rbcLC 
(Supplementary Figure 1). Dual 8nt-indexed primer sets were employed for the multiplexed amplicons for PacBio 
CCS and Illumina MiSeq. For these primers, the conservative priming regions were same as Wu et al.7 or iden-
tified using their approach, with different 8nt-indexes added to the 5′ ends. In addition, for Illumina MiSeq, 
we co-amplified trnL-F and rbcLN in the same PCR reaction for each of individual DNA sample. The details of 
primer sets and thermal conditions of PCR cycles were provided in Supplementary Tables 1 and 2, respectively. 
Each PCR reaction comprised 7.5 μL 2 × SuperRed PCR Master Mix (BIOTOOLS Co., Ltd., New Taipei, Taiwan), 
2 μL DNA template (10 ng/μL), 0.75 μL of each primer (10 nM), and ddH2O added to a total volume of 15 μL.
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For Sanger sequencing, PCR products were first purified using ExoSAP‐IT (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA), and then sequenced by an ABI 3730XL DNA Analyzer (Thermo Fisher 
Scientific, Waltham, Massachusetts, USA). For PacBio CCS and Illumina MiSeq, amplicon products were ini-
tially assessed through 1 × TAE 1% agarose gels. We then pooled these products to achieve similar molecu-
lar concentrations according to their estimated DNA concentrations. The DNA fragments with target sizes in 
these multiplexed amplicon pools were isolated by electrophoreses with 1 × TAE 0.8% agarose gels and purified 
using Geneaid Large DNA Fragments Extraction Kit (Geneaid, New Taipei, Taiwan). For the isolated DNA 
products with low O.D. values (i.e. A260/280 and A260/230 < 1.8), further purification was conducted using 
1 × AMPure XP Beads (Beckman Coulter, Brea, California, USA) before NGS library constructions. PacBio 
CCS library preparation and sequencing were carried out at the Sequencing and Genomic Technologies Core 
Facility of the Duke University Center for Genomic and Computational Biology, utilizing a single SMRT cell on 
a PacBio sequel sequencer with 3.0 chemistry (Pacific Biosciences, Menlo Park, California, USA). The fastq reads 
of PacBio CCS were then employed for the downstream demultiplexing and ASV (amplicon sequence variant) 
generation (see below). We constructed PCR-free libraries for Illumina MiSeq using KAPA Dual-Index Adapter 
Kit (Roche, Basel, Switzerland). DNA molecular concentrations of these Illumina libraries were measured 
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Fig. 1 The workflow of collecting fern DNA barcodes. The fern diagrams were downloaded from https://www.
phylopic.org/ or modified from Vasco et al.47.
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using Sequencing Library qPCR Quantification (Illumina, San Diego, California, USA). The libraries were then 
sequenced on Illumina’s MiSeq PE300 platform using Reagent Kit v3 (600-cycle; Illumina, San Diego, California, 
USA). To obtain DNA barcode sequences from the NGS fastq reads, adapter sequences were first trimmed by 
fastp32. Cutadapt33 was then applied for demultiplexing and removal of primer sequences, and dada234 was 
finally used to generate their ASV sequences. The most abundant ASV from each sample was selected as the 
DNA barcode sequence for further analyses.

rbcL trnL-F

Sanger sequencing 305 379

PacBio CCS 239 241

Illumina MiSeq 948 720

Table 1. Number of DNA barcode sequences by different sequencing methods.

Fig. 2 Maximum-likelihood rbcL + trnL-F phylogeny noted with the order-level taxonomy sensu PPG I. For 
details about each test, see Methods and Technical Validation. The fern diagrams were downloaded from 
https://www.phylopic.org/ or modified from Vasco et al.47 and Dong et al.48. The Psilotales and Equisetales are 
not colored.
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Data verification. For DNA barcodes obtained through the NGS strategies we evaluated the read abundance 
and proportion of the best ASV sequence per sample. Sequences with abundances below 30 reads for Illumina 
MiSeq and 10 reads for PacBio CCS were excluded from further analysis due to potential contamination. For 
Illumina MiSeq, we considered the process of index hopping, where indexed pair-end reads from different sam-
ples could contaminate each other. Additionally, samples with the best ASV sequences accounting for proportions 
lower than 0.9 were inspected to identify potential contamination by nonspecific PCR products or other DNA 
sources. By these, some rbcL amplicons were found likely to contain plastid-derived copies from mitochondrial 
genomes. In such cases, we manually retrieved sequences from the original ASVs and found the correct copy. 
Finally, for both rbcL and trnL-F barcodes, we used MUSCLE35 to align all DNA sequences, and FastTree236 to 
reconstruct a preliminary phylogeny. These analyses aimed to identify samples that were potentially misidentified 
or mislabelled. For the formal phylogeny, we first aligned all specimens within each family using MAFFT37. We 
merged these family-level trnL-F alignments into a single alignment using the MAFFT–merge argument, and 
aligned rbcL with the same outgroups as those used in Nitta et al.15. We then inferred maximum-likelihood (ML) 
phylogenies each with 1000 ultrafast bootstrap replicates (UFBS)38 using IQTREE39

Data Records
In total, we included 1,492 rbcL and 1,340 trnL-F DNA barcode sequences (Table 1) from 956 identified species 
across 152 genera, 34 families, and 11 orders. Among them, 22 and 23 species/taxa belong to hybrids and species 
complexes, respectively (Supplementary Tables 3 and 4). Except for 21 rbcL and 12 trnL-F sequences published 
earlier (Supplementary Table 5), all are newly generated in this study. Sequence information including their 
voucher, GenBank accession numbers, and sequencing methods are provided in Supplementary Table 5. Three 
alignment files including all DNA barcode sequences are available on Figshare40. More detailed voucher infor-
mation, including specimen records from TAIF and links to voucher images, is provided in the GBIF occurrence 
dataset41, in which DNA barcode sequences are also gathered. The raw reads resulting from Illumina MiSeq and 
PacBio libraries had been deposited in NCBI Sequence Read Archive (SRA)42.

technical Validation
The ML trees generated from the two DNA barcodes are available on Figshare40 and Fig. 2. These phylogenies 
provided strong resolution and branch supports identifying the systematic placement of 1,496 fern samples 
(Fig. 2), and aligned well with modern classification of ferns1,43–45. From the family-level backbone, the com-
bined rbcL + trnL-F tree shows over 90% of nodes with UFBS values above 90. Individually, the rbcL and trnL-F 
trees resolved 84% and 67% of nodes with similarly high supports. At the intergeneric level, the rbcL + trnL-F 
phylogeny resolved 89% of nodes with UFBS values above 90, while single-barcode rbcL and trnL-F trees 
resolved 83% and 81% with such high support. At the infrageneric level, the rbcL + trnL-F tree supported the 
monophyly of 75% of species with multiple collections, after we excluded hybrids and species-unidentified sam-
ples. On this scale, the rbcL and trnL-F trees respectively supported monophyly in 72% and 73% of species.

Code availability
The customized shell script for demultiplexing and removal of primer sequences within NGS reads using 
cutadapt (v.3.5), and the R (v.4.2.0) script for the generation of dada2’s ASV are available at https://github.com/
lykuofern/1.5KP_datapaper. The pipeline for technical validation was designed using the ‘targets’ R package46 and 
is available from https://github.com/joelnitta/bifa_barcodes. A Docker image to run the code is available from 
https://hub.docker.com/r/joelnitta/bifa_barcodes.
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